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A B S T R A C T   

Soil organic carbon (SOC) is a crucial metric for mitigating greenhouse gas emissions and developing climate- 
smart agriculture. DayCent is widely used to simulate SOC dynamics and soil trace gas fluxes in various eco-
systems. In this study, we developed DayCent-CUTE (auto-Calibration, sensitivity, and Uncertainty analysis 
ToolSet) for conducting global sensitivity analysis (GSA), auto-calibration, and uncertainty analysis for the 
model. The tool encompassed a pair of GSA methods and two distinct parameter optimization methods. 

A collection of 30 field experiments, encompassing 212 combinations of management treatments and 581 SOC 
measurements, was divided into 18 sites for calibration and 12 sites for independent model evaluation. The 
posterior parameter distribution obtained from the auto-calibration process reduces the model bias and RMSE 
values, while the Nash-Sutcliffe efficiency and R2 values showed improvements. The DayCent-CUTE proves to be 
an efficient and flexible tool that enhances the applications of the DayCent model.   

1. Introduction 

The concentration of greenhouse gases (GHGs), particularly atmo-
spheric CO2, escalates due to human activities. Fossil fuel combustion, 
including the burning of coal, oil, and natural gas for energy production 
and transportation, is a significant contributor to CO2 emissions. Addi-
tionally, agriculture plays a prominent role as the primary source of 
methane (CH4) and nitrous oxide (N2O) emissions (Byrne and Kiely, 
2008). Biogeochemical models are increasingly used to advance GHG 
accounting systems by effectively capturing intricate biogeochemical 
processes. These models enable the examination of how land manage-
ment practices influence GHG emissions and the dynamics of soil 
organic carbon (SOC) in ecosystems, soils, and climates where direct 
observations are limited and costly. 

Various biogeochemical models have been developed and utilized to 
quantify GHG emissions and SOC stocks. Notable examples include 
DayCent (Del Grosso et al., 2005), DeNitrification-DeComposition 
(DNDC) (Li et al., 2000), Environmental Policy Impact Climate (EPIC) 
(Williams, 1995; Wang et al., 2005), and Agricultural Policy 

Environmental eXtender (APEX) (Williams and Izaurralde, 2006; Wang 
et al., 2006; Feng et al., 2015). These models provide mathematical 
representations of soil biogeochemical processes and allow comparisons 
of simulated results with real-world observations to test our 
comprehension. 

The DayCent model (Del Grosso et al., 2001) is a daily time-step 
version of the CENTURY model (Parton et al., 1994) and explicitly ac-
counts for processes that generate N2O, NOx, and N2 emissions, such as 
nitrification and denitrification. It has been extensively utilized to 
simulate soil organic matter (SOM) dynamics, N2O and CH4 fluxes, and 
estimate net CO2, N2O, and CH4 emissions from soils in the US national 
greenhouse gas inventory submitted by the US EPA to the UN Frame-
work Convention on Climate Change. This involves an annual set of 
simulations covering GHG emissions from the majority of agricultural 
land use for the EPA annual report (USEPA, 2020), which requires model 
parameterization for standard crops, in addition to millions of model 
runs to estimate model uncertainty (Ogle et al., 2007, 2010; Del Grosso 
et al., 2010). Furthermore, DayCent is incorporated within the COM-
ET-Farm1 platform that implements the USDA’s entity-scale greenhouse 
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gas inventory methods (Powers et al., 2014). 
While DayCent is a powerful tool for studying ecosystem dynamics, it 

requires expertise and resources to utilize and interpret its outputs 
effectively. One challenge in using DayCent is its extensive parameter-
ization, where a sensitivity analysis is typically performed to identify the 
most influential parameters for subsequent calibration. Although Day-
Cent calibration guidelines have been provided (Del Grosso et al., 2011), 
manual calibration is subjective and may not always produce optimal 
parameter estimates, resulting in considerable uncertainty. To address 
this, automatic calibration methods have been employed, such as uti-
lizing parameter estimation software like PEST (Rafique et al., 2014) 
and Bayesian approaches (Gurung et al., 2020; Mathers et al., 2023). 
However, limited efforts have been made to develop a comprehensive 
tool for conducting GSA, auto-calibration, and uncertainty analysis for 
the model. To address this gap, our study focuses on developing and 
applying the DayCent-CUTE (auto-Calibration, sensitivity, and Uncer-
tainty analysis ToolSet), which serves as a user-friendly GSA, calibra-
tion, and uncertainty analysis tool for DayCent. 

Another challenge in using DayCent is the spin-up process, where the 
model is run for an extended duration, spanning several thousand years, 
using historical weather data, edaphic characteristics, and native vege-
tation to achieve a steady-state condition. The second simulation period, 
the base history, is then used to simulate the historical cropping or 
grazing practices before the time frame of most interest to the user 
(Hartman et al., 2021). However, studies have suggested that relying 
solely on initialization to equilibrium conditions may not provide ac-
curate initial levels of SOC for process-based model simulations (Car-
valhais et al., 2008; Wutzler and Reichstein, 2007). Alternative methods 
for initializing SOC pools have been explored, such as relating concep-
tual carbon pools with measurable fractions of SOC based on soil 
physiochemical properties (Christensen 1996; Luo et al., 2016). Several 
biotic and abiotic properties control SOC storage and can serve as in-
dicators for estimating initial SOC values (Wiesmeier et al., 2019). 
However, it is essential to acknowledge that accurately matching the 
conceptual pools with these measurable C fractions poses certain limi-
tations, as noted by Dangal et al. (2022). Dangal et al. (2022) used a 
combination of diffuse reflectance spectroscopy and machine learning to 
relate the DayCent model’s active, slow, and passive C pools with 
measurable particulate-, mineral associated-, and pyrogenic-forms of C 
fractions. They pointed out there is still a need for more measured data 
on C fractions to improve these methods. On the other hand, the U.S. Soil 
Enrichment Protocol (Climate Action Reserve, 2022) requires a C 
simulation model to use direct measures of SOC to initiate with-practice 
and baseline simulations for carbon crediting programs, highlighting the 
need for continued development of new ways to initialize SOC pools. 

In light of these challenges, our study aims to achieve the following 
objectives: (1) develop a graphical user interface tool for conducting 
GSA, auto-calibration, and uncertainty analysis for the DayCent model; 
(2) assess the suitability of the EPIC approach (Williams, 1995) for 
initializing SOC pools in the DayCent model; and (3) illustrate the 
effectiveness of the DayCent-CUTE tool for GSA and auto-calibration by 
utilizing 30 experimental field studies to calibrate and validate SOC 
under different cropland management practices. 

2. Material and methods 

2.1. The DayCent model 

DayCent is a process-based ecosystem biogeochemical model that 
simulates C and N dynamics, phosphorus and sulfur cycling, and the 
emissions of N2O and CH4 (Parton et al., 2001; Del Grosso et al., 2006, 
2011). The model simulates various processes involved in ecosystem 
dynamics, including plant growth processes such as photosynthesis, 
phenology (timing of biological events), dry matter allocation, and 
senescence (aging and deterioration of plant material). It considers the 
soil water balance, soil temperature, and SOM dynamics. 

In the current DayCent version, the DDCentEVI version2 (EVI sig-
nifies a version of DayCent with the option to use Enhanced Vegetation 
Index, known as EVI data), the simulation of SOM focuses specifically on 
the top 30 cm soil layer. The SOM is categorized into active, slow, and 
passive pools. These pools represent different rates of C turnover and 
dynamics, aiming to simplify and capture the complex processes within 
the soil C cycle. The active and slow organic matter pools consist of both 
surface and soil components, while the passive pool is solely represented 
in the soil. The passive pool represents a relatively stable fraction of 
organic matter that decomposes slower than the active and slow pools. 
By dividing C into these pools, the model can simulate the transfer of C, 
organic matter decomposition, and the gradual accumulation or deple-
tion of C over time. This division provides a more detailed depiction of C 
dynamics than using a single aggregate value for SOC. To account for 
organic matter inputs, plant materials such as plant residues and roots 
are transferred into these SOM pools from above and belowground litter 
pools (metabolic and structural) as well as three dead wood pools when 
using tree growth submodule. The DayCent model incorporates a 
comprehensive representation of organic matter inputs by considering 
the transfer of plant materials from above and belowground litter pools, 
as well as direct decomposition of dead wood into the active and slow 
pools. This approach enables a more accurate simulation of soil carbon 
dynamics and decomposition processes. 

The model also considers mineral N transformations, including N2, 
N2O and NOx emissions. The required inputs for the DayCent model 
include daily maximum and minimum temperature and precipitation, 
soil texture, land use, and land management information, such as crop 
planting and harvest dates, fertilization, irrigation, cultivation/tillage, 
grazing, and burning. The DayCent model’s user manual and a detailed 
model description are provided by Hartman et al. (2021). 

2.2. SOC initialization 

DayCent has options for using Burke’s equations and user-supplied 
initial values to initialize soil C pools. The standard approach is to 
perform a “spin-up” of the model for thousands of years under native 
vegetation and site-specific climate and soil conditions (Hartman et al., 
2021; Dangal et al., 2022). This study introduces a new option for 
initializing soil C pools in DayCent, which involves using an exponential 
curve and two parameters from the EPIC model (Williams, 1995). Direct 
measurement of SOC and parameter tuning for soil C pool initialization 
have been applied in various models such as EPIC (Wang et al., 2005), 
APEX (Wang et al., 2006, 2012), and SWAT-C (Zhang et al., 2013). EPIC 
and APEX typically assume that the passive C pool makes up 40–70% of 
the SOC, and the active C pool is set at a default value of 4% (Izaurralde 
et al., 2012). The fraction of the passive humus pool (FHP) in the plow 
layer of SOC is affected by the number of years the soil has been under 
cultivation. 

FHP= 0.7 − 0.3 × EXP(− 0.0227×YRC) (1)  

where YRc is the number of years the soil has been cultivated. Eq. (1) sets 
the range of the FHP parameter between 0.4 and 0.7. The amounts of 
SOC in the active pool (SOCactive) and passive pool (SOCpassive) are 
estimated by: 

SOCactive = FBM × SOCmeas (2)  

SOCpassive = FHP × (SOCmeas − SOCactive) (3)  

where FBM is a coefficient representing the fraction of SOC in the active 
C pool and ranges between 0.03 and 0.05; SOCmeas is the measured SOC 
for the 0–30 cm soil layer. The initial value of the slow C pool (SOCslow) 
is the difference between SOCmeas and the sum of active and passive 

2 Copyright 2022 Colorado State University, Fort Collins, CO 80523 USA. 
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pools. During biomass decomposition, while soil microbial activities 
remove C, the losses of N can occur through plant uptake, leaching, 
nitrification, and denitrification,. The C:N ratio is typically around 
10–12 (Allison, 1973; Halvorson et al., 2009). 

2.3. DayCent-CUTE 

The DayCent auto-Calibration, sensitivity, and Uncertainty analysis 
ToolSet (DayCent-CUTE) is a standalone desktop application with a 
Graphic User Interface (GUI) based on Python 3.9. The source code was 
adapted from the framework of APEX-CUTE (Wang et al., 2014). The 
GUI is designed with the Qt Designer tool in PyQT 5.3 DayCent-CUTE 
provides the flexibility to evaluate more than 50 model parameters of 
the DayCent model (Table 1) with two global sensitivity analysis (GSA) 
methods: (1) the extended Fourier amplitude sensitivity test (FAST) 
method (Saltelli et al., 2010) and (2) Sobol (Sobol, 2001; Saltelli et al., 
2010). Both are variance-based GSA methods that estimate each pa-
rameter’s fractional contribution to the model output’s total variance. 
These variance-based methods involve a decomposition of the variance 
into components because of interactions (Helton and Davis, 2003). The 
FAST method uses a periodic sampling approach and a Fourier trans-
formation techniques to decompose a variance of a model output into 
variances contributed by model parameters. The Sobol method uses 
low-discrepancy sequences for parameter sampling and estimation of 
sensitivity indices. As a result, the FAST method provides computational 
efficiency as an advantage over the Sobol method. However, the Sobol 
method is known for its robustness and is often used as a benchmark GSA 
method. The total effect index, STi, or the total sensitivity index is 
calculated as (Saltelli et al., 2000)): 

STi =
EX∼i (VX∼i (Y|X∼i))

V(Y)
= 1 −

VX∼i (EXi (Y|X∼i))

V(Y)
(4)  

where Xi represents the parameter under evaluation for its sensitivity, X 
~ i denates all other parameters excluding Xi, Y is the generic scalar 
model output equal to Y = f(X1, X2, …, Xk), VX ~ i is the variance of 
argument taken over Xi, EX ~ i is the mean of argument taken over Xi. 
The Sobol total sensitivity index STi measures the overall effects of 
fractional parameter interactions on the output variance in the full range 
of parameter space. 

STi = Si + Sij(i∕= j) + ⋯ + S1…i…s (5)  

Si =
Di

D
(6)  

where Si measures the first-order sensitivity of the ith parameter; D is the 
sum of the model output variance (Di). While conducting multi-sites 
GSA, our approach involved utilizing Kernel Density Estimation (KDE) 
to derive the probability density function of the STi across different sites 
and we used the means of STi values across the experimental sites to rank 
the parameter importance. 

DayCent-CUTE incorporates two autocalibration techniques for the 
DayCent model: the Dynamically Dimensioned Search (DDS) algorithm 
(Tolson and Shoemaker, 2007; Yen et al., 2014) and the Shuffled 
Complex Evolution algorithm - University of Arizona (SCE-UA) (Duan 
et al., 1993). The DDS algorithm is developed as a parameter search 
method for complex watershed models needing optimization of multiple 
parameters. It uses a random perturbation that is dynamically adjusted 
by changing the dimension of the search using the scalar neighborhood 
size perturbation parameter, which allows the algorithm to escape re-
gions around poor local minima in the parameter space. As a stochastic 
neighborhood search algorithm, it searches globally at the beginning 
and then dynamically and probabilistically, reducing the number of 

Table 1 
DayCent parameters available in DayCent-CUTE.  

Model 
parameter 

Description Initial 
value 

Lower 
bound 

Upper 
bound 

ANEREF(1) The ratio of rain/potential 
evapotranspiration below 
which there is no negative 
impact of anaerobic soil 
conditions on decomposition 

1.5 1 2 

ANEREF(2) The ratio of rain/potential 
evapotranspiration above 
which there is the maximum 
negative impact of anaerobic 
soil conditions on 
decomposition 

3 2.8 5 

ANEREF(3) The minimum value of the 
impact of anaerobic soil 
conditions on 
decomposition; functions as 
a multiplier for the 
maximum decomposition 
rate. 

1 0.1 1.1 

DAMR(1,1) Fraction of surface N 
absorbed by residue 

0.02 0.002 0.3 

DAMRMN(1) Minimum C/N ratio allowed 
in residue after direct 
absorption 

15 5 30 

DEC1(1) The maximum 
decomposition rate of 
surface structural litter, 
strucc(1) 

3.9 3 5 

DEC1(2) Maximum decomposition 
rate of soil structural litter, 
strucc(2) 

4.9 3 7 

DEC2(1) Maximum decomposition 
rate of surface metabolic 
litter, metabc(1) 

14.8 12 18 

DEC2(2) Maximum decomposition 
rate of soil metabolic litter, 
metabc(2) 

18.5 16 21 

DEC3(1) Maximum decomposition 
rate of surface active organic 
matter, som1c(1) 

6 4 8 

DEC3(2) Maximum decomposition 
rate of soil active organic 
matter, som1c(2) 

7.3 5 10 

DEC4 Maximum decomposition 
rate of soil passive organic 
matter, som3c 

0.0022 0.001 0.005 

DEC5(2) Maximum decomposition 
rate of soil slow organic 
matter; som2c(2) 

0.12 0.05 0.25 

FAVAIL(1) Fraction of N available per 
day to plants 

0.15 0.1 0.5 

FLEACH(1) Intercept value for a normal 
day to compute the fraction 
of mineral N, P, and S which 
will leach to the next layer 
when there is a saturated 
water flow; normal leaching 
is a function of sand content 

0.5 0.001 1 

FLEACH(2) Slope value for a normal day 
to compute the fraction of 
mineral N, P, and S which 
will leach to the next layer 
when there is a saturated 
water flow; normal leaching 
is a function of sand content 

0.05 0.001 0.5 

FLEACH(3) Leaching fraction multiplier 
for N to compute the fraction 
of mineral N which leaches 
to the next layer when there 
is a saturated water flow; 
normal leaching is a function 
of sand content 

1 0.2 2 

FWLOSS(1) Scaling factor for 
interception and 

1 0.2 2 

(continued on next page) 
3 https://pypi.org/project/PyQt5; last accessed on January 17, 2023. 
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dimensions in the neighborhood. Therefore, it becomes more focused on 
local searches as the number of iterations approaches the specified 
maximum to keep the current gain in calibration results. Thus, DDS can 
rapidly converge to reasonable calibration solutions and avoid poor 
local optima. Several recent papers reported that the DDS algorithm 
works well in optimizing watershed models (Becker et al., 2019; Yen 
et al., 2015, 2016) and crop models (Wang et al., 2014; Choi et al., 2017; 
Shoaib et al., 2021). 

The SCE-UA algorithm combines global exploration and local 
exploitation to search the parameter space efficiently. It also in-
corporates a shuffling mechanism, randomly exchanging members be-
tween different complexes. This shuffling helps exchange information 
among complexes and avoids premature convergence to suboptimal 
solutions. SEC-UA is known for its efficiency in navigating high- 
dimensional parameter spaces (Cooper et al., 1997; Ajami et al., 2004; 
Ayad et al., 2021). 

Table 1 (continued ) 

Model 
parameter 

Description Initial 
value 

Lower 
bound 

Upper 
bound 

evaporation of precipitation 
by live and standing dead 
biomass 

FWLOSS(2) Scaling factor for bare soil 
evaporation of precipitation 

1 0.2 2 

FWLOSS(3) Scaling factor for 
transpiration water loss 

1 0.2 2 

FWLOSS(4) Scaling factor for potential 
evapotranspiration 

0.75 0.2 2 

OMLECH(1) Intercept for the effect of 
sand on leaching of organic 
compounds 

0.03 0.000001 1 

OMLECH(2) Slope for the effect of sand 
on leaching of organic 
compounds 

0.12 0.02 0.8 

OMLECH(3) Amount of water that needs 
to flow out of water layer 2 
to produce leaching of 
organics 

1.9 0.02 2 

P1CO2A(2) Intercept for sand 
controlling C loss as CO2 

during decomposition from 
active pool 

0.17 0.1 0.25 

P1CO2B(2) Slope for sand controlling C 
loss as CO2 during 
decomposition from active 
pool 

0.68 0.55 0.74 

P2CO2(2) Fraction of C loss as CO2 

during decomposition from 
slow pool 

0.55 0.3 0.8 

P3CO2 Fraction of C loss as CO2 

during decomposition from 
passive pool 

0.55 0.5 0.9 

PABRES Amount of residue which 
will give maximum direct 
absorption of N 

100 70 200 

PEFTXA Intercept parameter for 
regression equation to 
compute the effect of soil 
texture on the microbe 
decomposition rate (the 
effect of texture when there 
is no sand in the soil). See 
eftext calculation in prelim.f. 
The factor eftext is used in 
somdec.f and affects the flow 
out of som1c(2) 

0.2 0.1 0.7 

PEFTXB Slope parameter for 
regression equation to 
compute the effect of soil 
texture on microbe 
decomposition rate; the 
slope is multiplied by the 
sand content fraction. See 
eftext calculation in prelim.f. 
The factor eftext is used in 
somdec.f and affects the flow 
out of som1c(2) 

0.4 0.2 1.5 

PMCO2(2) Fraction of C loss as CO2 

during decomposition from 
soil metabolic pool 

0.55 0.35 0.65 

PS1CO2(2) Controls the amount of C loss 
as CO2 when soil structural 
decomposes to slow pool 

0.55 0.4 0.8 

PS1S3(1) Intercept for clay effect on C 
transfer efficiency from 
active to passive pool during 
decomposition 

0.003 0.002 0.005 

PS1S3(2) Slope for clay effect on C 
transfer efficiency during 
decomposition from active 
to passive pool 

0.032 0.02 0.06 

PS2S3(1) Intercept for clay effect on C 
transfer efficiency from slow 

0.003 0.002 0.005  

Table 1 (continued ) 

Model 
parameter 

Description Initial 
value 

Lower 
bound 

Upper 
bound 

to passive pool during 
decomposition 

PS2S3(2) Slope for clay effect on C 
transfer efficiency during 
decomposition from slow to 
passive pool 

0.009 0.006 0.013 

RCESTR(1) C/N ratio for structural 
material, strucc(1) and 
strucc(2) 

100 50 300 

RIINT Root impact intercept used 
by rtimp; used for 
calculating the impact of 
root biomass on nutrient 
availability 

0.5 0.2 0.7 

SNFXMX(1) Symbiotic N fixation 
maximum for soybean g N/g 
C new growth 

0.04 0.00001 1 

TEFF(1) Temperature (degree C) at 
the inflection point for the 
temperature effect on 
decomposition 

15.4 5 30 

TEFF(2) Slope of line at inflection 
point, for determining the 
temperature component of 
DEFAC 

0.27 0.15 0.5 

WEFF(1) Moisture effect on 
decomposition 

30 25 35 

WEFF(2) Moisture effect on 
decomposition 

9 6 15 

VARAT11 
(1_1) 

Maximum C/N ratio for 
material entering surface 
active pool 

15 12 17 

VARAT11 
(2_1) 

Minimum C/N ratio for 
material entering surface 
active pool 

6 4 6 

VARAT12 
(1_1) 

Maximum C/P ratio for 
material entering surface 
active pool 

14 11 17 

VARAT12 
(2_1) 

Minimum C/P ratio for 
material entering surface 
active pool 

3 2 4 

dmp Damping factor for 
calculating soil temperature 
by layer 

0.003 0.001 0.01 

dmpflux Dampens strong fluxes of 
water between soil layers 

8e-6 1e-6 1e-4 

N2Oadjust_fc Maximum proportion of 
nitrified N lost as N2O at FC 

0.025 0.001 1 

N2Oadjust_wp Minimum proportion of 
nitrified N lost as N2O at WP 

0.02 0.003 0.03 

FBM Fraction of OC in biomass 
pool 

0.04 0.03 0.05 

FHP Fraction of OC in passive 
pool 

0.68 0.4 0.7  
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DayCent-CUTE facilitates single and multiple site calibration and 
simulations (batch run) and automatically assembles user-selected 
model outputs (Fig. 1). The tool incorporates several Python libraries, 
such as NumPy, Matplotlib, and SciPy, for numerical computation, 
plotting, and statistical analyses. In addition, the GUI and process 
components are coded in *.ui and *.py files following an object-oriented 
programming style. To share the DayCent-CUTE program with other 
model users, the users need to have the same version of Python installed, 
along with all the libraries used. To avoid this tedious process, we use 
the cx_Freeze 6.3 to freeze the Python scripts into an executable. The 
executable and Python library files are then packaged into an installer 
file using the free installer program Inno Setup.4 Currently, the DayCent- 
CUTE program supports only Microsoft Windows 7 or higher. 

A project must be created to run DayCent-CUTE for GSA or calibra-
tion. A project file (*.cproj) is made in the project folder, and DayCent 
input files used in the project are also copied into a subfolder called 
“TxtInOut.” The input files in the “TxtInOut” are only used during SA or 
calibration runs but are not updated or deleted during the CUTE simu-
lations. Once saved, the DayCent input files are copied to the “TxtWork,” 
a working folder where the CUTE updates input parameters using 
sampled values and runs DayCent for assessment. In a sensitivity anal-
ysis project, the rank of parameter sensitivity resulting from a GSA is 
printed in the output files called “fastIndices.csv” or “sobolIndices.csv” 
depending on the method selected for GSA. The outputs include total 
sensitivity and first-order sensitivity of DayCent parameters to selected 
model outputs. Calibration results are summarized in several files 
including: sampled parameters and objective function values for all 
model iterations; model performance metrics during the iteration, such 
as coefficient of determination (R2), model bias (Bais), the Nash-Sutcliffe 
efficiency (NSE), and root mean square error (RMSE). 

2.4. Experimental study sites 

A comprehensive literature review was undertaken to gather data for 
the calibration and evaluation of DayCent in simulating SOC dynamics 
using DayCent-CUTE. The review aimed to compile peer-reviewed and 
published studies pertaining to SOC. Experimental sites were selected 
based on the following criteria: (a) the studies must report sufficient 
information or any gaps in data should be reasonably inferable with 
minimal uncertainty to ensure effective site simulation; (b) SOC stocks 
should have been measured repeatedly over time (e.g., at least 2 twice in 
each experiment), allowing for the capture of SOC stock changes over 
time (e.g., over 3 to more than 100 years). This criterion ensures that the 
model accounts for practice effects on SOC and incorporates both short 
and long-term changes in soil biogeochemical processes; and (c) re-
ported SOC measurements should correspond to a minimum depth of 30 
cm, or the reported measurements should enable a reasonable estima-
tion of SOC at the 30 cm depth through interpolation across the reported 
depths. Following the review and evaluation process, 30 sites (Fig. 2) 
were selected for calibrating and validating DayCent. The identified 
datasets comprise 215 combinations of management treatments with 
581 measured SOC (excluding the initial/first-year measurements used 
to initialize soil C pools). Compiling the necessary model input files for 
each experimental site required gathering information from multiple 
relevant publications, including journal articles and book chapters. This 
approach was essential as long-term SOC measurements and the infor-
mation needed for parameterizing DayCent were not always available in 
a single publication. The citations for all the publications used in 
compiling the model input files are provided in the citation columns of 
Table 2 for the respective site. 

The dataset was randomly split into two sets for model calibration 
and independent evaluation, with a 60%–40% division across the 30 
sites. The model calibration dataset comprised 18 experimental sites, 

totaling 397 measurements (Table 2). The remaining 12 experimental 
sites were used for model evaluation and consisted of 220 measurements 
(Table 2). This resulted in an approximate split of 64% for calibration 
and 36% for evaluation. The experimental sites have well-documented 
management activities throughout the experiment, including crop 
rotation, cover crop usage, tillage practices, residue management, fer-
tilizer application rates, irrigation, and organic amendments. These sites 
also provide reported edaphic characteristics such as soil texture and soil 
pH, which are necessary for conducting DayCent simulations. Meteo-
rological data, encompassing daily minimum and maximum air tem-
perature as well as precipitation, were extracted from the 
Parameter–Elevation Regressions on Independent Slopes Model (PRISM) 
database developed by the PRISM Climate Group.5 This data was ob-
tained specifically for the experimental studies conducted in the United 
States (US). Weather data for US sites established before 1981 were 
extracted or gap-filled using DAYMET (Thornton et al., 2020) or local 
weather stations. These weather records were assembled with the ex-
periments in the Agricultural Carbon Enhancement network (GRACE-
net) database.6 For sites located in the United Kingdom, the nearest 
weather station (as per Barré et al., 2010) was utilized. In the case of 
Canada,7 weather data was sourced from Environment and Climate 
Change Canada. Temperature and precipitation data for sites in Brazil 
were obtained from the SWAT global weather data.8 As for the Austra-
lian site, temperature data was acquired from SWAT, and precipitation 
data was obtained from the nearest weather station, specifically the 
Australian Government’s Bureau of Meteorology.9 

2.5. Global sensitivity analysis, model calibration and evaluation 
performance criteria 

Although DayCent has a wide range of model parameters and 
DayCent-CUTE can facilitate over 50 parameter GSA and auto- 
calibration, for this particular study for SOC dynamics, we have 
selected 23 parameters (Table 3). Each of the 23 parameters was 
assumed to have an independent uniform prior distribution with lower 
and upper bounds listed in Table 1. These selected parameters directly or 
indirectly influence the dynamics of SOC by affecting the decay rate of 
soil carbon pools, carbon transfer efficiency, or crop productivity. The 
remaining parameters were left at their default values. For this study, 
the GSA was conducted using the FAST algorithm to identify the most 
influential parameters for SCE-UA calibration. 

The model parameters were treated as population-level variables 
during the calibration process, and a multi-site calibration was per-
formed for the 18 calibration sites. The SCE-UA algorithm was config-
ured with a maximum number of iterations set to 5000, utilizing RMSE 
as the objective function for optimization. In addition to RMSE, which 
calculates the average squared differences between the predicted values 
and the observed values, where a lower RMSE indicates a higher level of 
accuracy in aligning the model’s predictions with the actual data, other 
statistical analyses were employed to assess the model’s performance in 
terms of quality and reliability compared to the observed values. The 
model bias was used to evaluate systematic under- or over-prediction 
and determine the magnitude of error. NSE was employed to assess 
how well the predicted values capture the overall trend of the observed 
data. R2 was utilized to evaluate the model’s accuracy in tracking the 
variation of observed values. Graphical comparisons were performed to 
assess the agreement between measured and modeled results. These 

4 https://jrsoftware.org/; last accessed on January 19, 2023. 

5 https://prism.oregonstate.edu.  
6 https://data.nal.usda.gov/dataset/gracenet-greenhouse-gas-reduction-thro 

ugh-agricultural-carbon-enhancement-network.  
7 Historical Data - Climate - Environment and Climate Change Canada (weat 

her.gc.ca).  
8 https://swat.tamu.edu/data/cfsr.  
9 http://www.bom.gov.au/climate/data/. 
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comparisons included scatterplots of model predictions versus mea-
surements, histograms of residuals, and plots illustrating the 95% pre-
diction intervals for SOC stocks and SOC stock differences between 
paired treatments. These additional statistical measures contribute to a 
comprehensive evaluation of the model’s performance concerning the 
observed data. 

3. Results and discussion 

3.1. Parameter sensitivity on SOC estimation 

The DayCent model was initialized with SOC stocks obtained from 
field measurements using Equations (1)–(3). Before conducting GSA, 
preliminary runs were carried out for all sites to verify the successful 
execution of the model with the provided inputs. The results demon-
strated that the model initialization setup is realistic and appropriate. 
The realistic nature of the model initialization is supported by the 
overall model performance, as indicated by an R2 value of 0.92 (Fig. 3), 
which represents the dataset in its initial state before model calibration. 
This R2 value signifies a strong correlation between the model’s pre-
dictions and the observed data, indicating the realistic model setup. 

GSA was then performed across all 30 sites to obtain a better un-
derstanding of the DayCent model’s behavior. DayCent saves the FAST 
STi values of all 23 parameters used in GSA for each site. While the most 
influential parameters generally remain highly influential across study 
sites, the sensitivity indices are dynamic with STi values vary among 
different sites (Fig. 4). This variation underscores the importance of 
conducting GSA for specific model applications, and ranking sensitivity 
indices is a means of identifying the crucial parameters responsible for 
the majority of model output variability (Wang et al., 2006). Utilizing 
the ranked mean STi values, we selected the top 12 influential parame-
ters for model calibration (Table 3). In two related studies conducted by 
Gurung et al. (2020) and Mathers et al. (2023), GSA was performed 

Fig. 1. DayCent-CUTE’s GUI showing the Task tab.  

Fig. 2. Locations of the experimental sites used in this study (US and Canada 
sites only). 
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using the Sobol method to evaluate the multi-site SOC dynamics in the 
DayCent model. Gurung et al. (2020) aggregated data from 19 long-term 
field experiments and employed 17 parameters for GSA. Out of the nine 
parameters highlighted as influential by Gurung et al. (2020), seven 
were also recognized as influential in our present study and six were 
recognized as influential by Mathers et al. (2023). The study by Mathers 
et al. (2023) involved data from 41 agricultural research sites and 
employed 28 parameters for GSA. Among the ten most influential pa-
rameters chosen for model calibration, seven were the same as those 
identified in our study. It is noteworthy that Gurung et al. (2020) ranked 

the maximum decomposition rate of the passive pool (DEC4) as the most 
influential parameter, whereas in our study and Mathers et al. (2023), it 
was ranked as the 12th influential parameter. Both the FAST and Sobol 
total sensitivity indices assess the combined influence of fractional 
parameter interactions on output variance across the entire parameter 
space. Varied parameter selections and experimental datasets in GSA 
may result in differing STi values and rankings for these parameters. 

Of the 12 identified parameters for model calibration, the first 5 are 
as follows: (1) optimum decomposition rate of soil slow organic matter 
(DEC5(2)), (2) fraction of the passive humus pool (FHP), (3) minimum 

Table 2 
Experimental SOC study locations and treatments used for model calibration and evaluation. Treatment category abbreviations are CROPP: cropping practices 
(rotation, cover crops); NFERT: inorganic N fertilizer application (control, different levels of N rates); DISTU = soil disturbance and/or residue management (full till, 
no-till, reduced till); Omad: organic amendment (occurs in calibration dataset only); and n is the number of observations at the study location, excluding the initial 
measurements.  

Study: Calibration (18 
stites; 397 obs) 

Site location Latitude Longitude Sand 
% 

Silt 
% 

Clay 
% 

n 
obs 

Duration 
(year) 

Treatment References 

Brookings Brookings, SD, USA 44.33 − 96.78 15 50 35 12 4 CROPP, 
DISTR 

Hammerbeck et al. (2012);  
Wegner et al. (2018) 

Davis Davis, CA, USA 38.53 − 121.78 44 41 15 8 8 CROPP, 
NFERT, Omad 

Clark et al. (1998) 

FivePoints Five Points, CA, USA 36.34 − 120.12 43 28 29 12 8 CROPP, 
DISTR 

Mitchell et al. (2015); Mitchell 
et al. (2017); Veenstra et al. 
(2006) 

FortValley Fort Valley, GA, USA 32.53 − 83.89 65 25 10 36 3 CROPP, 
DISTR, 
NFERT 

Sainju et al. (2005) 

Goias Goias, Brazil − 17.84 − 50.6 28.8 21.7 49.5 4 9 CROPP, 
DISTR 

Ferreira et al. (2019) 

Hoytville Hoytville, OH, USA 41.01 − 84.01 21 42 40 6 23 CROPP, 
DISTR 

Collins et al. (1999) 

IthacaNE Ithaca, NE, USA 41.2 − 96.4 10 67 23 6 9 DISTR Jin and Varvel (2018) 
Lethbridge Lethbridge, AB 49.7 − 112.83 15 85 34 8 25 Omad Hao et al. (2003) 
LethbridgeABC Lethbridge, AB 49.7 − 112.83 38 31 31 18 79 CROPP Monreal and Janzen (1993) 
Lexington Lexington, KY, USA 38.11 − 84.48 7 70 23 16 14 DISTR, 

NFERT 
Blevins et al. (1983); Ismail et al. 
(1994) 

Mead 2 Mead, NE, USA 41.25 − 96.47 7 62 31 63 18 CROPP, 
NFERT 

Varvel (2006) 

NarrabriFieldC1 Narrabri, New South 
Wales, Australia 

− 30.2 149.6 26 21 53 21 19 CROPP, 
DISTR 

Senapati et al. (2014) 

ORpegn Pendleton, OR, USA 45.72 − 118.63 12 70 18 67 79 DISTR, 
NFERT, Omad 

Bista et al. (2016); Ghimire et al. 
(2015); Rasmussen and Smiley 
(1997) 

Rodale Kutztown, PA, USA 40.55 − 75.72 19.5 41.5 39 6 21 NFERT Elliott et al. (1994); Pimentel 
et al. (2005) 

Saginaw Saginaw, MI, USA 43.38 − 84.11 9 44 47 12 19 CROPP Christenson (1997) 
SwiftCurrent Swift Current, SK 50.28 − 107.8 37.5 26.5 36 24 43 CROPP, 

NFERT 
Campbell and Zentner (1997);  
Campbell et al. (2007) 

Tribune Tribune, KS, USA 38.52 − 101.66 19 81 25.6 28 9 CROPP, 
NFERT 

Halvorson and Schlegel (2012) 

Wooster Wooster, OH, USA 40.78 − 81.93 25 60 15 14 43 CROPP, 
DISTR 

Collins et al. (1999) andDick 
et al. (1997) 

Evaluation (12 sites, 220 obs) 
Broadbalk Rothamsted, 

England 
51.81 − 0.37 25 50 25 22 162 NFERT Rothamsted Research (2018) 

Dalhart Dalhart, TX, USA 36.16 − 102.63 67 33 19 14 7 CROPP, 
NFERT 

Halvorson et al. (2009);  
Halvorson and Reule (2007) 

DixonSprings Dixon Springs, IL, 
USA 

37.43 − 88.66 23 77 19 27 20 DISTR Olson et al. (2010) 

FortCollins Fort Collins, CO, USA 40.65 − 104.99 39 61 34 14 8 DISTR Halvorson et al. (2009) 
Ithaca 2 Ithaca (ithaca2), NE, 

USA 
41.2 − 96.4 10 58 32 3 13 NFERT Jin and Varvel (2018); Jin et al. 

(2015) 
Mandan Mandan, ND, USA 46.77 − 100.95 28 51 21 36 13 DISTR, 

NFERT 
Halvorson et al. (2002) 

NarrabriField6 Narrabri, New South 
Wales, Australia 

− 30.2 149.6 26 21 53 25 10 CROPP Rochester (2011) 

NarrabriFieldD1 Narrabri, New South 
Wales, Australia 

− 30.2 149.6 26 21 53 28 10 CROPP Hulugalle et al. (2013) 

Rosemount Rosemount, MN, 
USA 

44.71 − 93.09 12.5 65 22.5 23 22 DISTR, 
NFERT 

Dolan et al. (2006) 

RussellR Winter, CA, USA 38.54 − 121.87 18 59 23 19 19 CROPP Kong et al. (2005) 
SCharleston South Charleston, 

OH, USA 
39.8 − 83.5 15 65 20 6 32 DISTR Collins et al. (1999); Jarecki and 

Lal (2005) 
Sidney Sidney, NE, USA 41.22 − 103.01 36 37.5 26.5 3 23 DISTR Elliott et al. (1994)  
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value of the impact of anaerobic soil conditions on decomposition 
(ANEREF(3)), which functions as a multiplier for the maximum 
decomposition rate, (4) the effect of temperature on decomposition 
(TEFF(1)), and (5) a scaling factor related to soil water (FWLOSS(4)) 
that influences potential evapotranspiration. Additionally, the moisture 
effect on decomposition (WEFF(2)) also has a substantial impact on the 
dynamics of soil carbon (Fig. 4). 

3.2. Posterior model parameters 

The SCE-UA calibration for the 18 experimental sites reached 
convergence after 2275 iterations (Fig. 5). This assertion is corroborated 
by the presence of a low normalized geometric range, which signals the 
optimization process is concentrating on a narrower parameter value 
range. Furthermore, the improvement rate of the RMSE over the last 
three iterations was a mere 0.08%. As a result, the calibrated parameters 
now exhibit marginal posteriors with narrower ranges and higher den-
sities (Fig. 6), in contrast to the initially assumed uniform priors. This 
indicates that the measurement dataset provided informative con-
straints for the SCE-UA calibration process. Notably, influential pa-
rameters such as DEC5(2), TEFF(1), FWLOSS(4), PMCO2(2), P1CO2A 
(2), and FHP demonstrate a significant reduction in uncertainty 
compared to their uniform priors, which span the parameter space. The 
95% posterior intervals of the optimum decay rates for the slow and 

passive pools are reported to range between 0.0527 and 0.1987 (DEC5 
(2)) and 0.0017 to 0.0039 (DEC4), respectively (Table 3). These in-
tervals imply turnover times ranging from 5 to 19 years for the slow pool 
and 260–580 years for the passive pool. These findings align with the 
results reported by Gurung et al. (2020), where they observed turnover 
times between 6 and 14 years for the slow pool and 200–500 years for 
the passive pool based on the calibration of 8 long-term experimental 
sites (a total of 19 sites were reported in their study). The parameter 
TEFF(1), associated with the temperature effect on decomposition, 
varies between 9 and 24 ◦C, peaking around 14 ◦C (Table 3 and Fig. 6). 
This suggests that decomposition is most sensitive to temperature 
changes within this particular temperature range. 

3.3. Posterior model prediction and performance evaluation 

The SCE-UA calibration resulted in posterior parameter distributions 
that demonstrated significantly decreased model bias compared to the 
prior parameter distribution results (Fig. 7). For instance, the median 
values of model bias were 0.34 and 2.35 t C ha− 1 from posterior and 
prior calibration, respectively. The calibration yielded a reduced RMSE 
with median values of 4.56 t C ha− 1, in contrast to 7.97 t C ha− 1 in the 
prior distribution. Furthermore, it achieved higher NSE scores, with an 
increase from 0.82 to 0.92, and enhanced R2 values, improving from 
0.88 to 0.94. As anticipated, the model’s performance statistics are 

Table 3 
Summary statistics of marginal posterior distributions of calibrated model parameters derived from the multi-site calibration process.  

Parameters Posterior quantiles Best fit 

2.50% 25% median 75% 97.50% 

ANEREF(2) 2.9276 3.4071 3.6488 3.8633 4.2712 3.9794 
ANEREF(3) 0.2616 0.4342 0.4726 0.5199 0.9386 0.4654 
DEC4 0.0017 0.0026 0.0029 0.0032 0.0039 0.0034 
DEC5(2) 0.0527 0.0610 0.0657 0.0831 0.1987 0.0615 
FWLOSS(4) 0.4824 1.4396 1.7470 1.7827 1.9387 1.7412 
P1CO2A(2) 0.1303 0.1656 0.1729 0.1790 0.2103 0.1774 
P2CO2(2) 0.3052 0.3273 0.3612 0.4561 0.7197 0.3303 
PMCO2(2) 0.3977 0.4760 0.4857 0.4954 0.5973 0.4821 
TEFF(1) 8.8240 13.3031 14.1964 17.1022 23.5947 14.3776 
TEFF(2) 0.1572 0.2680 0.3602 0.4530 0.4939 0.4703 
WEFF(2) 7.7426 10.8406 12.4803 13.8124 14.7638 13.9155 
FHP 0.4737 0.5427 0.5611 0.6005 0.7418 0.5425  

Fig. 3. Preliminary simulation using DayCent default parameter values and initial SOC measurements from 30 study sites for initialization of soil carbon pools.  
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better for the calibration dataset than for the evaluation dataset, 
reflecting the model’s parameterization tailored to these specific loca-
tions. Nonetheless, it’s worth highlighting that the model’s performance 
metrics for posterior evaluation surpass those for prioor calibration, as 
illustrated by the probability density distribution in Fig. 7, where the 
model bias is − 0.73 t C ha− 1 (compared to 2.35), RMSE is 6.84 t C ha− 1 

(compared to 7.97), and NSE is 0.87 (compared to 0.82). 
The simulations based on the posterior parameter distribution dis-

played a distribution of predicted median values and measured SOC 
values that clustered around the 1:1 line (Fig. 8). The calibration and 
evaluation datasets demonstrated a positive association between the 
measured and modeled SOC stocks. This indicates a close agreement 
between the measured and modeled values. Notably, the calibrated 
model realistically predicted both low and high SOC values for both 
datasets, with the average value of simulated SOC stocks closely 
matching the mean of measured SOC stocks (Fig. 8). The relationship 
between the measured and modeled SOC stocks was stronger in the 
calibration dataset. 

In the calibration dataset, the coefficient of variation (CV), a statis-
tical measure that normalizes the dispersion of a probability 

distribution, for measured SOC stocks stands at 36%, with a corre-
sponding mean value of 49.1 t C ha− 1. Conversely, the CV for simulated 
SOC stocks across the 18 calibration sites is marginally lower, registering 
at 34%. In the evaluation dataset, the CV for measured SOC stocks is 
42%, with a mean of 48.9 t C ha− 1, while the CV for simulated SOC 
stocks is also slightly lower at 38%. This suggests that, in both the 
calibration and evaluation datasets, the measured SOC data exhibits a 
slightly higher degree of relative variability compared to the simulated 
SOC data, although the difference is relatively small. The disparity in CV 
values between measured SOC stocks and DayCent model simulations 
can be attributed to various factors, including: (1) Measurement error: 
The data collected for SOC stocks can introduce higher variability in the 
measured values due to several sources of error, such as sampling 
variability, laboratory analysis, and instrument precision. These mea-
surement errors can consequently inflate the observed CV for measured 
SOC stocks; (2) Spatial and temporal variability: SOC stocks in the real 
world often exhibit substantial spatial and temporal variations driven by 
factors such as soil type, land management practices, and climate fluc-
tuations. These natural variations may result in higher CV values in 
measured data. In contrast, DayCent, functioning as a point simulation 
model, primarily captures the dominant characteristics of each field 
experimental site; 3) Model assumptions: models like DayCent simplify 
and make deterministic assumptions about how SOC behaves in the 
environment. This can lead to more consistent and less variable model 
outputs. 

While we treated the model parameters as population-level variables 
during the calibration process, resulting in posterior distributions of 
model parameters suitable for application to the entire range of soils and 
climatic conditions represented by these experiments, as well as for new 
testing sites within the geographical domain, DayCent-CUTE users also 
have the option to select a single optimized parameter set tailored to 
their specific research needs. In this study, Fig. 9 presents the model 
performance for the best fit parameter set (Table 3). The model effec-
tively explains approximately 94% and 93% (with R2 values of 0.94 and 
0.93) of the variance in the observed SOC stocks for the calibration and 
independent evaluation datasets, respectively. Given the range of 
measured SOC stocks (from 20.4 to 155.1 t C ha− 1), the RMSE value of 
4.49 t C ha− 1 indicates a reasonable prediction error for the calibration 
dataset. For the evaluation dataset, where the measured SOC stocks 

Fig. 4. Ranked DayCent parameters based on the means of FAST total sensitivity indices across the 30 field experiments used in this study for SOC simulation.  

Fig. 5. Convergency of the Shuffled Complex Evolution algorithm for DayCent 
parameter calibration across 18 field experiments in the multi-site calibra-
tion process. 
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range from 23.8 to 115.6 t C ha− 1, the RMSE value of 5.35 t C ha− 1 

suggests a slightly higher level of prediction error. The NSE values of 
0.93 and 0.92 were obtained for the calibration and evaluation datasets, 
respectively, indicating that the calibrated DayCent model effectively 
captures the SOC dynamics across multiple sites in a realistic manner. 
This also demonstrated that using directly measured SOC and tuning 
model parameters for the initialization of soil C pools overcome the 
difficulties present in the classical method of model spin-up initializa-
tion, especially for those sites where the previous land use history is 
unknown. The optimization results at the 30 experimental study sites 
show that the DayCent model realistically simulated the effects of 
various management strategies on SOC stocks without an equilibrium 
iteration. 

As previously discussed, the evaluation dataset exhibits a greater 
variability in measured SOC stocks compared to the calibration dataset, 
with CV values of 42% and 36%, respectively. While the posterior model 
predictions successfully capture the variability in the measured SOC 
stocks within the evaluation dataset, we observed significant under-
predictions for the majority of SOC comparison points at the Rosemount 
site and overpredictions for most SOC comparison points at the Broad-
balk site in the evaluation dataset (see Fig. 8b). However, the parameter 
set that provides the best fit presents a much more balanced distribution 
of under- and over-predictions for these sites as shown in Fig. 9b. 

The improved performance exhibited by this parameter set suggests 
the possibility of selecting a parameter combination suitable for 
reducing uncertainty within a specific sub-population when 

Fig. 6. Marginal posterior density of DayCent parameters from multi-site calibration.  

Fig. 7. Violin plots showing the distributions of model performance metrics for the prior and posterior modeling comparisons between simulated and measured SOC 
stocks in the calibration and evaluation dataset. The bias and RMSE units are in t C ha− 1. 
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implementing the DayCent model. However, it’s important to 
acknowledge that this choice may also limit the model’s applicability to 
various sites or regions, contingent upon the availability of parameter-
ization data. When faced with varying environmental conditions and 
diverse management practices across different geographical locations, 
the posterior distribution of model parameters obtained from this study 
empowers the DayCent model to extend its application to simulate SOC 
dynamics beyond the scope of the experimental sites examined in this 
study. The resulting 95% central posterior prediction interval can be 
used for quantifying the uncertainty of model predictions. Choosing one 
optimized deterministic model or a generalized model with joint pos-
terior distribution for model parameters depends on the precise objec-
tives and constraints of the analysis or application. In certain instances, a 
hybrid approach may be advantageous, where an initial application of a 
generalized model is followed by site-specific refinements. These re-
finements involve incorporating site-specific data and adjustments into 
the modeling process when ample site-specific information is at hand. 
Such integration serves to boost accuracy and can be achieved through 
the use of DayCent-CUTE. 

While DayCent was calibrated and validated for SOC stocks in the top 
0–30 cm of agricultural soils, the SOC stock change rate (ΔSOC in t C 
ha− 1 yr− 1) in response to management practice changes were also 
evaluated (Fig. 10). This represents a more rigorous validation, as the 
per year SOC stock changes involves comparing pairwise treatment 
differences over the years elapsed. Since the model was calibrated with 
unified parameter sets for all treatments. These generalized models had 
no specific calibration for individual treatments. Consequently, to ac-
count for treatment differences effectively, it is crucial for the model to 
accurately capture the interactions between management practices and 
carbon sequestration processes within its underlying biogeochemical 
representations. 

When comparing various pairwise combinations of cropping prac-
tices (continuous cropping, rotations, cover cropping), different inor-
ganic N fertilization rates (ranging from 0 to 224 kg N ha− 1), and 
different levels of soil disturbance (e.g., no-till, reduced till, chisel 
tillage, conventional tillage), we observed that the measured ΔSOC 
change rates and standard deviations (SD) were generally higher than 
the simulated ΔSOC rates, even for the calibration datasets (Fig. 10). 
This indicates that the model leans towards conservatism, consistently 
underpredicting SOC stock changes, aligning with the observations 
made by Mathers et al. (2023). In their study, Mathers et al. noted that 
DayCent demonstrates a conservative behavior by under-predicting SOC 
changes when SOC increases compared to counterfactual baselines 
across 14 pairs of crop functional group and practice category combi-
nations within the dataset from 41 sites. In the context of carbon 

crediting markets, the most critical metric is quantifying the change in 
response to management practices. While underestimation is preferable 
to avoid overcrediting in carbon-crediting programs, the consistent 
underestimation of SOC change rates raises several important implica-
tions and considerations. 

Firstly, the model may not adequately capture the interactions be-
tween management practices and carbon cycling processes, including 
decomposition rates (with decomposition parameters derived from the 
multi-site, multi-treatment SOC dataset used for model parameteriza-
tion), vegetation growth, or carbon inputs. This lack of accuracy may not 
effectively capture real-world conditions. However, as science advances 
and our understanding of plant litter decomposition, SOM formation, 
and microbial dynamics improves, coupled with the availability of more 
informative and representative datasets for testing our understanding, 
the process-based representation of SOM dynamics can be enhanced. 
This, in turn, has the potential to reduce model structure and parameter 
uncertainty. 

Additionally, it’s worth noting that measured SOC changes typically 
exhibit a higher degree of variability or noise, as evidenced by the 
broarder ranges of measured SOC change rate in both the calibration and 
evaluation datasets (Fig. 10), due to several significant factors: First, 
natural variability plays a key role, as SOC levels can naturally fluctuate 
in agricultural fields, influenced by variations in plant productivity and 
microbial activity. Consequently, SOC measurements taken at different 
time points may inherently display fluctuations, even in the absence of 
intentional management changes. Second, measurement errors intro-
duce another layer of complexity, as different measurement methods, 
laboratories, and instruments can yield slightly divergent results of the 
SOC data. Additionally, soil sampling location can introduce variability 
over the measurement period, contributing to the observed noise in SOC 
change data. Third, temporal lags in SOC changes’ responses to alter-
ations in management practices are common. This delayed response can 
result in observed variations in SOC data. Often, SOC measurements are 
taken at one time during the year, whereas annual average SOC 
modeling outputs are typically used to represent the SOC stock for the 
entire year, creating a temporal discrepancy that makes it more chal-
lenging to discern immediate cause-and-effect relationships. Finally, 
spatial variability within a field or ecosystem, driven by factors like 
topography, soil texture, and historical land management practices, can 
contribute to variations in measured SOC changes. Smaller sample sizes 
may also exacerbate the noise within the data. Consequently, when 
comparing pairwise treatment model outputs to measurements of SOC 
change rates, it often entails more substantial uncertainties than when 
comparing SOC stocks. While not explicitly evaluated in this study, it is 
essential to acknowledge that uncertainty inherent in measured data can 

Fig. 8. Comparison of SOC stocks between measured and the posterior medians (depicted as dots) along with the 95% central posterior prediction interval for the 
calibration and evaluation datasets. The dashed diagonal line represents the 1:1 relationship. 
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impact model parameterization and the reliability of calibrated models 
(Harmel et al., 2006). 

4. Conclusion and future work 

In this study, we developed DayCent-CUTE, a Python-based GUI 
program, to facilitate parameter sensitivity analysis, calibration, and 
uncertainty analysis of the DayCent model. The GSA and SCE-UA 
parameterization methods were employed as objective approaches for 
evaluating the DayCent model’s performance. The current version, 
DayCent-Cute ver. 1.0, can be used to evaluate over 50 DayCent pa-
rameters and identify influential parameters for subsequent calibration. 
By examing 30 peer-reviewed experimental studies, we demonstrated 
the successful application of the GSA-FAST method in identifying sig-
nificant parameters that influence SOC prediction. The combined utili-
zation of GSA and SCE-UA methods effectively reduces uncertainty in 
model predictions of SOC, as indicated by posterior predictions for SOC 
estimates. 

While population-based parameters were derived from a multi-site, 
multi-treatment SOC stock dataset for model parameterization, repre-
senting SOC stock change rates is inherently more challenging than 
depicting SOC stocks. In the context of carbon crediting markets, the 
quantification of SOC stock differences resulting from adopted practices 
is the pivotal metric of concern. This underscores the need for an 
enhanced scientific representation of the intricate interactions between 
management practices and SOM dynamics within the process-based 
model structure, accompanied by a more rigorous dataset encompass-
ing both model inputs and measured SOC stocks. The DayCent-CUTE 
tool enables continuous model updates to incorporate new datasets 
and improvements in model structure as they emerge from future 
research. 

To further enhance the performance of DayCent-CUTE on high- 
dimensional optimization problems, we are currently developing and 
exploring the implementation of a self-adaptive Differential Evolution 
learning strategy within a population-based evolutionary framework 
known as DiffeRential Evolution Adaptive Metropolis (DREAM) (Vrugt 

Fig. 9. Comparison of simulated and observed SOC stocks using the optimized parameter set for a) the calibration dataset and b) the independent evaluation dataset.  
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et al., 2008, 2009). Integrating different algorithms into DayCent-CUTE 
will facilitate parallel processing through a multi-chain method. Overall, 
the DayCent-CUTE program is expected to serve as a user-friendly tool 
for parameter calibration and uncertainty analysis, enabling the appli-
cation of the DayCent model to assess SOC dynamics under various 
management practices. This will provide valuable scientific information 
to support the development of climate-smart agriculture practices. 
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